
Helical instability of charged vortices in layered superconductors

A. Gurevich
National High Magnetic Field Laboratory, Florida State University, Tallahassee, Florida 32310, USA

�Received 13 December 2009; revised manuscript received 12 February 2010; published 9 March 2010�

It is shown that the electric charge of vortices can result in a helical instability of straight vortex lines in
layered superconductors, particularly Bi-based cuprates or organic superconductors. This instability may result
in a phase transition to a uniformly twisted vortex state, which could be detected by torque magnetometry,
neutron diffraction, electromagnetic, or calorimetric measurements.
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Vortices in superconductors carry the quantized magnetic
flux �0=2�10−7 Oe cm2 resulting from the macroscopic
phase coherence of superconducting state. Vortices also carry
a nonquantized electric charge q caused by the suppression
of superconductivity in the vortex core.1–6 In low-Tc s-wave
superconductors this charge is usually negligible and does
not manifest itself in the electromagnetic response of vorti-
ces driven by the Lorentz force of superconducting currents.
However, the situation changes in superconductors with
short coherence length �, low superfluid density, and uncon-
ventional pairing symmetry combined with the competition
of superconductivity with nonsuperconducting spin or
charged ordered states, as characteristic of high-Tc cuprates,
recently discovered oxypnictides or organic super-
conductors.7 For cuprates, theoretical estimates1–4 predict a
relatively large fraction �10−3 of the electron charge e per
each pancake vortex residing on the ab planes, yet even
larger charge of different sign was observed by nuclear quad-
rupole resonance.8 It has been suggested1 that the vortex
charge could change the sign of the Hall coefficient observed
in cuprates9 or result in structural transformations of the vor-
tex lattice.10

In this Rapid Communication we show that vortex charge
can cause an intrinsic helical instability of a rectilinear vor-
tex and a phase transition to a twisted vortex state. This
instability is different from the helical instability of vortices
driven by either currents flowing along the vortex line11 or
by screw dislocations12 or twisted vortex states in rotating
liquid He.13 The buckling instability of vortices results from
the Coulomb repulsion of charged pancake vortices which
tend to shift away from the straight line along the c axis as
illustrated by Fig. 1. Such charge fragmentation is inhibited
by the vortex line tension caused by weak magnetic and
Josephson coupling of vortex pancakes14,15 and also by
charge screening, which confines the relative displacements
of pancakes on neighboring ab planes within the Thomas-
Fermi screening length �TF. Thus, the helical instability
would be most pronounced in layered materials with low
vortex line tension and �TF��, as characteristic of high-Tc
cuprates, ferropnictides, or organic superconductors.

To calculate properties of spiral vortices we write the ex-
cess linear charge ��r� in a vortex as follows:

��r� =
�0�2

r2 + �2 + �a exp�− r2/2�2� . �1�

Here the first term is the Ginzburg-Landau �GL� contribution
resulting from the change in the chemical potential � around

the core, �BCS�r�� �	2�r�−	0
2�, 	�r��	0r / �r2+�2�1/2 is the

modulus of the order parameter, �0=eN	0
2� ln Tc /��, and N

is the density of states at the Fermi surface in the normal
state. The GL vortex charge qBCS�2
�2�0 ln�� /�� is spread
over the London penetration depth �.2 Strong dependence of
the critical temperature Tc on doping enhances �0 in cu-
prates. The term ��a in Eq. �1� is added phenomenologically
to take into account the localized core charge due to compet-
ing superconducting and antiferromagnetic orders in uncon-
ventional superconductors.5,6 NMR experiments indicate8

that the local core charge in cuprates can greatly exceed the
BCS contribution. Equation �1� corresponds to the following
Fourier transform ��k�=2
�2��0K0�k��+�a exp�−k2�2 /2��
and the total excess charge per unit length q
�2
�2��0 ln�� /��+�a�, where K0�x� is the modified Bessel
function.

The excess charge density ��r� in a superconductor is
screened in the same way as in a normal metal.1–4 Screening
is determined by the Fourier transform of the static dielectric
function ��k�, which, for the isotropic Thomas-Fermi model
equals ��k�=1+�2 /k2, where �=1 /�TF. The Fourier trans-
form of the electric potential 
�k , p� produced by a charged
curved vortex parameterized by its displacement u�z� relative
to the z axis is given by the Poisson equation:

�k2 + p2���k,p�
�k,p� = 4
��k��
−�

�

e−ipz+iku�z�dz , �2�

where ��k , p� in a uniaxial material depends on both the in-
plane wave vector k and the z component p perpendicular to
the layers. From Eq. �2�, we obtain the functional of electro-
static energy W�u�z�	= �1 /2�
�
d3r:

W =� ���k��2d2kdpdz1dz2

4
2�k2 + p2���k,p�
eip�z2−z1�+ik�u�z1�−u�z2��. �3�

Here two periodic structures u�z� are considered: helical dis-
tortions, ux=u cos Qz and uy =u sin Qz, and planar zigzag
distortions, ux=u cos Qz and uy =0, where u and Q quantify
the amplitude and the period of the structures. For the spiral
vortex, we have ku�z1�−ku�z2�=2u sin�Qz−��kx sin�Qz+�
+ky cos�Qz+��, where z�= �z1�z2� /2. Neglecting a possible
dependence of ��k , p� on p due to charge modulation along
the z axis, integrating Eq. �3� over z1+z2 and the polar angle
in the k plane, and adding the elastic energy Fe gives the
total line energy of a vortex helix Fs=Fe+Ws where
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Ws = �
0

�

k���k��2dk�
−�

�

dpdz
e−2ipzJ0�2uk�sin Qz��


�k2 + p2���k,p�
, �4�

Fe =
u2�0Q2

4�2 ln
�2�2

�2�1 + �2Q2�
+

�0u2

4�2 ln�1 + �2Q2� . �5�

Here Fe describes the dispersive tilt energy of a vortex in a
uniaxial superconductor,14,15 J0�x� is the Bessel function, �
=�c /� is the anisotropy parameter, and �0= ��0 /4
��2 is the
vortex energy scale. For a zigzag vortex, we obtain Fz
=Fe /2+Wz, where Wz is given by Eq. �4� in which
J0�2uk�sin Qz�� is replaced by J0

2�uk�sin Qz��. To determine
which of the two structures has lower energy, we minimize
Fs and Fz with respect to u and Q using ��k , p� for a layered
metal:16

��k,p� = �0 +
�0s2�2 sinh�ks�

2�cosh�ks� − cos�ps��sk
, k � 2kF, �6�

where �2=4
2e2�2 /m��0s2, s is the interlayer spacing, �0 is
the background dielectric constant, m� is the electron effec-
tive mass, and kF is the Fermi momentum. For k�2kF, the
last factor k in the denominator should be replaced by k
−�k2−4kF

2 . Equation �6� takes into account the anisotropy of
screening at large k and the Friedel oscillations due to sin-
gularity in �� /�k at k=2kF. For �ks , ps��1, Eq. �6� reduces
to the Thomas-Fermi dielectric function ��k , p�= �1+�2 /
�k2+ p2���0 with the screening length �TF=�−1.

Now we show that a rectilinear vortex along the c axis
becomes unstable with respect to bending distortions if q
exceeds a critical line charge qc. At the instability threshold
q
qc, Eq. �4� can be expanded in small u, and the z inte-
gration produces the � functions at k=0 and k= �Q yielding
the following change in We:

�Ws = −
u2

2
�

0

� � ���k��2k

��k,0�
−

���k��2k3

�k2 + Q2���k,Q��dk . �7�

Hence helical distortions do reduce We, the electrostatic en-
ergy gain increasing as Q increases. The quadratic expansion
of Eq. �3� for zigzag distortions yields �Wz=�Ws /2. Given
that the charged vortex core is typically larger than either �TF
and s, we expand ��k , p� in �ks�2�1 since the integral in Eq.
�7� is mostly determined by the region k2��2, and ���k��2
rapidly decreases for k��−1. As the result, the energy change
for small u takes the form

�Fs = Fe −
q2u2

4r0
4�0�2�1 −

4 sin2�Qs/2�
Q2s2 + �2Q/��2sin2�Qs/2�� . �8�

Here the effective core radius r0 is defined by q2 /2r0
4

=
0
�k3���k��2dk=4
2
0

�����2rdr and Eq. �1�, giving r0=� at
�a��0. As q exceeds qc, the function �Fs�Q� shown in Fig.
2 first becomes negative at a finite Q. Such behavior reflects
the effect of crystalline anisotropy, which strongly reduces
the vortex line tension at Q��1 thus facilitating the short
wavelength instability. The equation �Q�Fs=0 at Q��1
yields

Q2 = �2/2 ln��/�Q� �9�

so that the twist pitch �s�23/2
 ln1/2�� /����TF�10�TF. For
�TF=0.5–1 nm in cuprates,17 �s�5–10 nm turns out to be
larger than �. From the equation �F�qc ,Q�=0 and Eqs. �8�
and �9� we obtain the critical charge qc strongly reduced by
crystalline anisotropy:

qc
2 = 2�r0��4�0�0�ln��/�Q� + 1/2�/�2. �10�

Given the relation �Fs=2�Fz, both helical and zigzag in-
stabilities occur at the same qc and Q, so to see which of
these structures has lower energy, the amplitude of spontane-
ous distortions u at q�qc is to be calculated. Near the insta-
bility threshold q
qc, the general Eq. �4� can be expanded
in powers of small u up to terms �u4 and integrated at
�r0��2�1 as before. This gives the energy change for the
spiral vortex: �Fs /F0=−�su

2+�su
4 /4, where �s

= �1−qc
2 /q2�, �s=6Q2 /r0

2��2+4Q2�, and F0=q2Q2 /4r0
2�2��2

+Q2��0. Minimization of �F yields the dependence u�q�
characteristic of the second-order phase transition:

u2 =
�r0

2

3
�4 +

�2

Q2��1 −
qc

2

q2�
�

2�r0
2

3
�2 + ln

�

��
��1 −

qc
2

q2� , �11�

where �=r0
2
0

����k��2k5dk /
0
����k��2k3dk→1 if �a��0. For

q�qc, the amplitude of the vortex helix is of the order of �,

s

z

FIG. 1. �Color online� Spiral instability of a straight chain of
charged pancake vortices in a layered superconductor.
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FIG. 2. Energy of the helical vortex line as a function of the
wave vector Q and different ratios of q /qc described by Eq. �8� for
� /s=103 and �2�TF /s�2=10.
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and the total energy gain equals �Fs=−�s
2F0 /�s. For a zigzag

vortex, we obtain �z=�s /2 and �z=3�s /8. Thus, �Fz
=2�Fs /3, so a helical vortex, which provides the maximum
spacing between charged vortex pancakes at a given u, is
more energetically favorable than a zigzag vortex, which can
lower its energy by transverse buckling distortions.

The instability criterion q�qc depends on T. For ex-
ample, the BCS vortex charge q�	0

2�2 in Eq. �1� is indepen-
dent of T at Tc−T�Tc, while qc��0

1/2�2� �1−T /Tc�−1/2 in
Eq. �10� diverges at Tc, suggesting that the helical instability
occurs below a certain temperature Th�Tc. However, the
NMR experiments8 show that the observed q is mostly de-
termined by the non-BCS core contribution modeled by the
term ��a in Eq. �1�. Currently little is known about �a�T�, so
we analyze the criterion q�qc at low T where it can be
expressed in terms of observable parameters. It is convenient
to rewrite q�qc in the form ���c where �c=qs /e is the
fraction of the electron charge e per pancake vortex, and

�c =
s�r0��2�0

1/2

23/2��
��c

e2 �ln1/2� �

��
� . �12�

For YBa2Cu3O�7-x	 with �0=25, �TF=0.5 nm,17 �=200 nm,
r0=1.5 nm, s=0.85 nm, and �=5, Eq. �12� gives �c
1.6,
much larger than ���0.2–2��10−2 observed for the opti-
mally doped YBa2Cu3O7.8 Larger values of ���1–5�
�10−2 were observed for YBa2Cu3O8.8 The situation be-
comes more interesting for layered cuprates and organic su-
perconductors, for which ��100–600.7 For Bi-2212 with
s=1.5 nm, �=200 nm, �=500, �0=10, and �r0=3, we ob-
tain �c�4�10−2 per double CuO planes. Therefore, layered
cuprates �particularly underdoped ones� and organic super-
conductors would be promising candidates for the experi-
mental search for helical vortices, particularly at low T
where the vortex core size in the clean limit r0�T�
���0�T /Tc may decrease due to the Kramer-Pesch effect.18

Such non-GL core shrinkage strongly reduces qc in Eq. �10�
and could result in an unusual case of r0�T���TF for which
the instability is further enhanced by stronger Coulomb in-
teraction of pancake vortices.

The single vortex helical instability may result in a long-
range twist of the interacting vortex lattice. Indeed, if helical
displacements u�z� of all vortices are phase locked, they do
not change the flux density � ·u=0 and thus contribute to
neither the shear nor the compression energy of the twisted
vortex lattice. Thus, as far as the elastic and electrostatic
energies are concerned, vortex structures with a long-range
chiral order would be more energetically favorable than
structures with different signs of Q or phases of helical dis-
tortions on neighboring vortices. In this case the vortex lat-
tice would undergo a phase transition at q�q�T ,B� to a uni-
formly twisted state. Fluctuations and pinning of vortices and
proliferation of topological defects may destroy the long
range chiral order at higher T and B, however if the spacing
between pinning centers is much greater than the twist pitch
�, pinning does not affect the single-vortex helical instability.
The mean-field phase transition at q=qc results in the spe-
cific heat jump 	C=2F0TB��T�s�2F0 /�0�s=TB
��2+4Q2���Tq−�Tqc�2 /3�0�2��2+Q2��0. If �Tqc��Tq, we
have 	C /	C0�TB�2 ln�� /��� /TcBc2�TF

2 �2�0, where 	C0
=Tc��THc�2 /8
 is the specific heat jump at Tc.

Interaction of vortices can be taken into account by add-
ing the elastic twist energy B�0u2Q2 /16
�1+Q2�2�
��0Bu2 /16
�2 �Refs. 14 and 15� in Eq. �5�. Then the prob-
lem reduces to the helical instability of a single vortex with a
field-dependent line tension �̃l= ��0 /�2�ln�� /�Q�
+�0B /8
�2Q2, where the last term results from the mag-
netic cage potential.14,15 Minimization of F�Q� at q=qc and
Qs�1 yields

Q4�2 ln
�

�Q
− 1� = �Q2 +

4
B�2

�0
��2, �13�

qc
2 = 2�0�0r0

4�2��2 + Q2�� 1

�2 ln
�

�Q
+

2
B

�0Q2� . �14�

For B��0 /8
�TF
2 �2, Eqs. �13� and �14� reduce to Eqs. �9�

and �10�. For B��0 /8
�TF
2 �2, we have Q

��B /�0�1/4����1/2, which gives the critical charge qc
��r0

2 /��TF���0�0B /4
�1/2 independent of anisotropy. The
instability region T�Th�B� defined by q�Th��qc�Th ,B� thus
widens as B decreases.

Helical distortions with Q�� can produce minibands in
the spectrum of core quasiparticles moving along the vortex.
This may affect the vortex viscosity, vortex mass, and pin-
ning, and also smear the discrete core levels in the scanning
tunnel microscope �STM� images of a helical vortex. Vortex
chirality also manifests itself in a “fountainlike” currents
along the z axis12,13 and features of flux dynamics controlled
by the Lorentz force f= ��0 /c��J� t� exerted by the current
density J per unit vortex length where t�z�=�sr / ��sr� is a
tangent unit vector along the vortex helix parameterized by
r= �u cos Qz ,u sin Qz ,z� and ds=dz�1+Q2u2. Transport
current distorts the helix, yet the net Lorentz force F
= ��0 /c�
0

L�J� t�ds= ��0L /c��J�z� is independent of chiral-
ity. The Lorentz forces acting on a helical vortex also pro-
duce the torque �=
0

L�r� f�ds /L absent for a straight vortex.

J

f�

f�

�c

qc(T,H) q

FIG. 3. Mechanism of the torque exerted by a transverse current
on the vortex helix where closed lines depict currents circulating
around the vortex core. The upper part shows the torque as a func-
tion of the line charge q�T ,H�.
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Substituting here f= ��0 /c��J� t�, we obtain that the uniform
current density J� perpendicular to the helix produces the
net torque per unit length along the z axis

� = �0u2�J� � Q�/2c , �15�

as illustrated in Fig. 3. The net torque K=�BV /�0 exerted by
closed magnetization current loops vanishes, but a uniform
current I flowing along a film strip of length L in a perpen-
dicular magnetic field results in the global torque directed
along the y axis:

Kc = − u2QBIL/2c . �16�

Here Kc�q� exhibits the behavior characteristic of the
second-order phase transition: Kc=0 if q�qc and Kc�1
− �qc /q�2 for q�qc even for the field H directed along the
symmetry axis �see Fig. 3�. This distinguishes Kc from the
conventional torque Ka= �M�H� of tilted straight vortices
in a uniaxial superconductor for which Ka vanishes at H �c.
To estimate the magnitude of Kc, we compare it with Ka���
=VH�0�1−�−2�sin 2� ln��Hc2 /H��� /64
2�2�� for H in-
clined by the angle � relative to the c axis where ��

= �cos2 �+�−2 sin2 ��1/2.19 For uQ����1, we obtain that

Kc exceeds Ka at J�J0�TF /��J0 for any �, where J0
=c�0 /16
2�2� is of the order of the depairing current den-
sity. Thus, the sensitive torque magnetometry could be used
to detect twisted vortex structures.

Helical vortices for H inclined with respect to the c axis
may interfere with the chain and kinked vortex structures in
layered superconductors in tilted magnetic fields.20 Twisted
vortex state may also affect the spiral instability caused by
longitudinal currents in the Lorentz force free configurations
J �H,11 resulting in asymmetry of the c-axis critical currents
parallel and antiparallel to the twist pitch. One could also
expect manifestations of the helical overdamped soft modes
at q�qc in the Josephson plasma resonance in layered su-
perconductors at H �c and the effect of the chiral mixed state
on electrodynamics and the magneto-optical Kerr effect.21

In conclusion, vortex charge can result in helical vortex
instability which can enforce a spontaneous macroscopic
twist of the vortex lattice. This can manifest itself in electro-
dynamic and thermodynamic properties of layered supercon-
ductors.
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